An even function is a function that satisfies the property f(x) = f(-x) for all x in its domain. Geometrically, this means that the graph of an even function is symmetric with respect to the y-axis.
Here are some key characteristics of even functions:
Symmetry: The graph of an even function is symmetric about the y-axis. This is the defining characteristic.
Algebraic Test: To determine if a function is even, substitute -x for x in the function. If the resulting function is identical to the original function, then the function is even.
Examples: Common examples of even functions include:
Operations:
Understanding symmetry is crucial to grasping the concept of even functions. They are important in various areas of mathematics, including calculus and Fourier analysis. The concept is related to other types of function odd%20function.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page